Ultrasonic Sensor for Measurement of Water Flow Rate in Horizontal Pipes Using Segment Area

Main Article Content

Anang Suryana
Muchtar Ali Setyo Yudono

Abstract

Measurement of flow rate in wastewater pipes is still challenging to be done in real-time. The main challenge in wastewater measurement is the non-homogeneity of wastewater due to the presence of solid waste material. This becomes a hindrance when using mechanical flow measurement or direct contact between the fluid and the measuring device. Therefore, the solution is to perform non-contact flow measurement between the fluid and the measuring device. In this study, a flow sensor was developed for a horizontal pipe using the cross-sectional area measurement method on a horizontal pipe measured by an ultrasonic sensor as the fluid level measuring device. The ultrasonic sensor can measure the height of the fluid level, allowing the flow velocity and cross-sectional area of the horizontal pipe to be determined. The basis of this measurement is that any flowing fluid in a pipe that experiences a change in velocity will also experience a change in volume or fluid level. This measurement is in accordance with the continuity equation. From the calibration results, an error of 1.7% was obtained for the height measurement from the ultrasonic sensor compared to the ruler used as a height calibration tool. Meanwhile, the error in the flow velocity measurement from the ultrasonic sensor compared to the calibration results using the tracker software was 4.2%. The error in volume measurement from the ultrasonic sensor compared to the standard measuring tool, a 5-liter beaker glass, was 0.8%. As a conclusion, flow rate measurement using the ultrasonic sensor with the cross-sectional area measurement method can be used to measure the flow rate in a horizontal pipe with a diameter of 11 cm.

Article Details

How to Cite
[1]
A. Suryana and M. A. S. Yudono, “Ultrasonic Sensor for Measurement of Water Flow Rate in Horizontal Pipes Using Segment Area”, Fidelity, vol. 5, no. 1, pp. 60-68, Jan. 2023.
Section
Articles
Received 2022-11-14
Accepted 2022-12-28
Published 2023-01-31

References

[1]Yang, W., Zhang, W., Zhou, X., Chen, J., Zhang, H., & Du, C. (2019). Design of an electromagnetic flow sensor for the measurement of wastewater flow rate. Measurement, 134, 308-315.

[2]Lao, L.,  Gao,  J., Wang,  Y.,  Liu, Q.,  &  Fan, Z.  (2019).  Performance  evaluation  of ultrasonic  flow measurement  with different types of flow conditioners in large-diameter pipes. Flow Measurement and Instrumentation, 67, 1-10.

[3]Wang, J., Zhang, Y., Wang, Z., Liu, Y., & Liu, J. (2019). A deep learning approach to flow rate measurement using ultrasonic sensor. Measurement, 145, 622-630. doi: 10.1016/j.measurement.2019.06.014.

[4]Asmara,  A.  F., Syaefudin,  M.,  & Wibowo, A.  (2021).  Wireless flow  sensor  for water flow  measurement  in  various sizes  of  pipe.  IOP  Conference  Series:  Materials  Science  and  Engineering,  1078(1),  012062.  doi:  10.1088/1757-899X/1078/1/012062

[5]Guo,  Q.,  Wang,  Y.,  Zhang,  J.,  &  Wu,  Y.  (2018).  A  magnetic  flow  sensor  for  pipe  flow  measurement  with  wide measurement range and high accuracy. Sensors, 18(12), 4097.

[6]Kim,K.,  Park, K.  J.,  &  Lee,  J.  (2019). Electromagnetic flowmeter  with a symmetrical  magnetic  field for measuring low flow rates. Sensors, 19(12), 2793.

[7]Chen, W., Wang, Y., Zhang, L., & Liu, H. (2020). An optical fiber flow sensor with high accuracy and fast response time for gas-liquid two-phase flow measurement. Sensors and Actuators A: Physical, 301, 111754.

[8]Jalilinasab, S., & Nourbakhsh, A. (2019). Ultrasonic flow measurement in pipes: A review. Flow Measurement and Instrumentation, 69, 101617.

[9]Mahdavinejad, M., & Ghanbarzadeh, A. (2017). A review of ultrasonic flowmeters. Measurement, 111, 1-18.

[10]Kumar, R., &Kumar, A. (2020). A review on ultrasonic flow measurement techniques. Measurement: Journal of the International Measurement Confederation, 168, 108225.

[11]Singh, M., & Gupta, V. (2017). Non-contact level measurement techniques: A review. Measurement, 103, 129-150. doi: 10.1016/j.measurement.2017.02.016.

[12]Chen, B., Jia, Y., Yang, Y., Chen, Z., & Liu, X. (2019). Flow measurement in a large-scale closed water circuit using ultrasonic cross-correlation technology. Measurement, 146, 692-700.

[13]Xu, L., Tang, J., Zhan, H., Li, S., Li, Y., & Li, Y. (2021). A new method for measuring flow rate of gas-solid two-phase flow in vertical pipes based on ultrasonic cross-correlation technology. Powder Technology, 386, 777-788.

[14]Zhu, X., Liu, G., Yan, X., & Zhang, L. (2018). Design of Water Flow Monitoring System Based on Ultrasonic Sensor. Journal of Physics: Conference Series, 1101(1), 012022. doi: 10.1088/1742-6596/1101/1/012022

[15]Sularso,  H.,  Hidayat,  Y.,  &  Nasrullah,  A.  (2019).  Pengukuran  debit  air  pada  pipa  saluran  menggunakan  metode venturi dan metode tembereng. Jurnal Teknik ITS, 8(1), B183-B187.

[16]Supriyanto,  S.,  &  Kurnia,  D.  (2017).  Analisis  pengukuran  debit  aliran  fluida  pada pipa  menggunakan  sensor ultrasonik tipe clamp-on. Jurnal Teknologi, 9(1), 53-61.

[17]Prihadi,  E.,  Kurnia,  D.,  &  Taufik,  I.  (2021).  Analisis  pengukuran  aliran  air  dengan  metode  tembereng  di  pipa penyalur. Jurnal Teknik Mesin, 9(2), 37-45.

[18]Wulandari, R.,  Prasetyaningrum,  A.,  &  Soesilo,  T.  (2021).  The  Effect  of  Obstacle  on  Flow  Rate  in  a  Pipe  Using Ultrasonic Flow Meter. Journal of Physics: Conference Series, 1776(1), 012053. https://iopscience.iop.org/article/10.1088/1742-6596/1776/1/012053

[19]Prihadi,  Kurnia,  A.,  &  Taufik,  A.  (2021).  Experimental  study  of  the  effect  of water  temperature  on  the  flow  rate in the    pipeline    using    ultrasonic    flowmeter.    Journal    of    Physics:    Conference    Series,    1823(1),    012024. https://iopscience.iop.org/article/10.1088/1742-6596/1823/1/012024

[20]Hu,  J.,  &  Yu,H.  (2019).  Theoretical  Calculation  of  Pipe-Flow  Energy  Conversion  of  Flue  Gas  to  Improve  Boiler Efficiency. Journal of Energy Resources Technology, 141(3), 032007. https://asmedigitalcollection.asme.org/energyresources/article/141/3/032007/368786/Theoretical-Calculation-of-Pipe-Flow-Energy[21]Chen, L., Zheng, C., & Zhang, Y. (2020). An improved algorithm for ultrasonic flowmeter measurement based on cross-correlation. Measurement, 157, 107755.

[22]Zhang, Z., Hu, Z., Wang, Y., & Ma, X. (2019). An ultrasonic flowmeter based on a new cross-correlationalgorithm. Sensors, 19(21), 4584.

[23]Liu,  Y.,  Xiong,  W.,  Tan,  Z.,  Wu,  J.,  &  Yin, X.  (2021). Design  of  Ultrasonic  Flow  Velocity  Sensor  Based  on  Wireless Transmission. Journal of Physics: Conference Series, 1829(1), 012079.

[24]Patel,  R.  C.,  &  Patel,  S.  R. (2017).  Experimental  study  of  flow  measurement  by  using  Venturi,  Orifice  and Rotameter. International Journal of Engineering Research and Applications, 7(3), 36-40.

[25]Hasanuzzaman, M., Rahman, M. M., & Hasan, M. R. (2016). Measurement of water flow rate in a circular pipe using ultrasonic flow meter. Procedia Engineering, 147, 1263-1269. https://doi.org/10.1016/j.proeng.2016.06.275

[26]Azeem, M., Raza, S., Mahmood, T., Khan, A., & Malik, M. R. (2019). Performance evaluation of venturi, orifice and ultrasonic  flow  meters  for  the  measurement  of  flow  rate  of  fluids.  Journal  of  King  Saud  University-Engineering Sciences, 31(4), 366-373.


Most read articles by the same author(s)

1 2 > >>