Analysis of Air Circuit Breaker (ACB) MVS20N as a Protection System for AC Combiner Panels at PT. Tiga Kreasi Indonesia

Main Article Content

Apriliano Chandra Diva
Didik Aribowo

Abstract

The study explores the functionality and performance of Air Circuit Breaker (ACB) as a protective mechanism employing air arc extinguishing medium. ACBs find utility in both low and medium voltage panels, utilizing atmospheric pressure air to extinguish arcs generated during switching events or disturbances. This research undertakes a comprehensive analysis of ACB components, wiring configurations, and the calibration of threshold values, including the electric tripping unit system. Employing a methodology involving observation, interviews, and literature review, the study determines critical parameters such as the incoming current value (2000 A), Ir (0.4), Lsd (2), and Tr (0.5). The established threshold limit for ACB activation is set at 800 A, with the Lsd/current reaching 1,600 A upon ACB activation, triggering automatic tripping if the current surpasses 1,600 A. The study also identifies the activation time (0.5 seconds) for ACB tripping upon receiving currents exceeding 1,600 A. Analysis reveals pre-alarm deactivation at 85% current level, while activation occurs at 90%, indicating impending electrical tripping. For instance, Ir of 800 A signifies overload threshold, leading to automatic ACB deactivation and circuit shutdown upon current surpassing 800 A. Similarly, exceeding the short circuit threshold of 1,600 A triggers automatic ACB activation, ensuring circuit safety. This research sheds light on critical aspects of ACB functionality and performance, offering insights into its efficient operation and protective capabilities in electrical systems.

Article Details

How to Cite
[1]
A. C. D. Chandra and D. Aribowo, “Analysis of Air Circuit Breaker (ACB) MVS20N as a Protection System for AC Combiner Panels at PT. Tiga Kreasi Indonesia”, Fidelity, vol. 6, no. 1, pp. 75-86, Jan. 2024.
Section
Articles
Received 2023-11-27
Accepted 2024-01-17
Published 2024-01-31

References

Lisi, F. Ch. , Lisi Fielman., & Silimang Sartje. (2018). Analisa Perhitungan Kapasitas dan Pemilihan Circuit Breaker (CB) pada Penyulang Gardu Induk Paniki Sistem Minahasa. Jurnal Teknik Elektro Dan Komputer, 7, 9–15.

Wardono, S., Ahimsa, P., Pramana Rahardiansah, dan, Teknik Elektro, J., & Negeri Jakarta Jl Ir G A Siwabessy Kampus, P. D. (2019). Desain Sistem Kontrol Air Circuit Breaker Utama Panel Incoming LVMDP 1 PT. Arami dengan Relay Kontrol RM35TF30. In Prosiding Seminar Nasional Teknik Elektro (Vol. 4).

Demeianto, B., Ilmal Yaqin, R., Preston Siahaan, J., Endri Priharanto, Y., Zaki Latif Abrori, M., Tumpu, M., Ilham Fadiga, A., Mahendra Program Studi Permesinan Kapal, T., Kelautan dan Perikanan Dumai, P., Wan Amir, J., Pangkalan Sesai, K., Dumai Barat, K., Dumai, K., & Riau, P. (2022). Rancang Bangun Panel Automatic Transfer Switch (ATS) pada Pembangkit Listrik Tenaga Surya sebagai Catu Daya Kincir Air pada Tambah Perikanan. Authentic Research of Global Fisheries Application Journal, 4.2, 1–16.

Amelia Hutagalung, N., Nyoman Setiawan, I., & Wayan Sukerayasa, I. (2023). Analisis Unjuk Kerja Pembangkit Listrik Tenaga Surya (PLTS) Atap On-Grid 463,25 kWp di Perusahaan Farmasi pada Kawasan PT Jakarta Industrial Estate Pulogadung, Jakarta Timur. Jurnal SPEKTRUM, 10(2), 70–81.

Hendarto, D., & Sarman, J. (2014). Penerapan Metode Dead Bus untuk Sinkronisasi Genset Cadangan. JUTEKS, 1, 8–13.

Rane, S. B., & Narvel, Y. A. M. (2016). Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes. International Journal of System Assurance Engineering and Management, 7, 305–321. https://doi.org/10.1007/s13198-015-0405-z

Electric, S. (2023). EasyPact MVS User manual 07/2023 Contents User manual for circuit breakers and ET/ETA/ETV Trip System Discovering EasyPact MVS 1 Using EasyPact MVS 10. In Manual Book (Vol. 2, pp. 1–62).

Most read articles by the same author(s)