Water Level Classification for Early Flood Detection Using KNN Method

Main Article Content

Jiwa Akbar
Muchtar Ali Setyo Yudono

Abstract

Floods occur when water levels exceed normal limits, causing rivers to overflow and inundate low-lying areas. Early warning systems for flood disasters are crucial to mitigate the damage caused, such as loss of life and property. A flood classification system can be developed by utilizing water level data from the Department of Water Resources to predict the likelihood of flooding using the K-Nearest Neighbors (KNN) algorithm. This study aims to determine the flood status classification based on water levels using the KNN method in the Ciliwung River. The research data were obtained from the DKI Jakarta open data site, consisting of 564 samples. The study evaluated K values ranging from 1 to 10. The average accuracy across all K scenarios was 99%, with the best K value being 1, which provided 100% accuracy, sensitivity, and specificity. These results indicate that the KNN method is effective in classifying flood status based on water level data, making it a reliable tool for early warning systems. This system is expected to help reduce the negative impacts of floods by providing accurate and timely information to the public and authorities. This research makes a significant contribution to the development of disaster mitigation technology, particularly in flood risk management in urban areas.

Article Details

How to Cite
[1]
J. Akbar and M. A. S. Yudono, “Water Level Classification for Early Flood Detection Using KNN Method”, Fidelity, vol. 6, no. 2, pp. 49-57, May 2024.
Section
Articles
Received 2024-04-27
Accepted 2024-05-12
Published 2024-05-31

References

D. Hartanti and A. Ichsan, “Komparasi Algoritma Machine Learning dalam Identifikasi Kualitas Air,” vol. 9, no. 1, pp. 1–6, 2023.

Q. S. Slat, “Analisis Debit Banjir dan Tinggi Muka Air Sungai Pinateduan di Desa Tatelu Kabupaten Minahasa Utara,” J. Sipil Statik, vol. 8, no. 3, pp. 403–408, 2020.

Y. Ardhi, “Potret Udara Aliran Sungai Ciliwung yang Menyempit,” 2020, 2020. https://sindikasi.republika.co.id/berita/q3n6iy314/potret-udara-aliran-sungai-ciliwung-yang-menyempit-1

R. Al Fauzi, “Analisis Tingkat Kerawanan Banjir Kota Bogor Menggunakan Metode Overlay dan Scoring Berbasis Sistem Informasi Geografis,” Geomedia Maj. Ilm. dan Inf. Kegeografian, vol. 20, no. 2, pp. 96–107, 2022, doi: https://doi.org/10.21831/gm.v20i2.48017.

D. I. D. A. S. Wuryantoro, “Potensi banjir berdasarkan periode ulang 5 tahunan di das wuryantoro,” e-Jurnal MATRIKS Tek. SIPIL, vol. 5, pp. 1179–1186, 2017, [Online]. Available: https://jurnal.uns.ac.id/matriks/article/view/36896/24122

D. Ramdani, “Bencana banjir terjadi 501 kali pada Januari-April 2021,” ANTARA, 2021. https://www.antaranews.com/berita/2133238/bencana-banjir-terjadi-501-kali-pada-januari-april-2021 (accessed Jul. 12, 2023).

P. Matondang, S. Saifullah, and ..., “Penerapan Algoritma Backprogation Untuk Memprediksi Tingkat Kerawanan Banjir di Wilayah Kabupaten Mandailing Natal,” TIN Terap. Inform. …, vol. 1, no. 11, pp. 582–586, 2021, [Online]. Available: http://ejurnal.seminar-id.com/index.php/tin/article/view/735%0Ahttps://ejurnal.seminar-id.com/index.php/tin/article/download/735/489

Anggraini; Asfilia Nova, “Prediksi Status Banjir Sungai Ciliwung Untuk Deteksi Dini Bencana Banjir Menggunakan Artificial Neural Network Backpropagation.,” Universitas Islam Negeri Maulana Malik Ibrahim, 2022.

A. Sabathos Mananta and G. Arther Sandag, “Prediksi Kelulusan Mahasiswa Dalam Memilih Program Magister Menggunakan Algoritma K-NN,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 10, no. 2, pp. 90–96, 2021, doi: 10.30591/smartcomp.v10i2.2488.

I. Solikin, “Teknik Data Mining untuk Prediksi Kanker Payudara yang Efisien,” Fidel. J. Tek. Elektro, vol. 3, no. 3, pp. 63–67, 2021, doi: 10.52005/fidelity.v3i3.100.

N. N. Dzikrulloh and B. D. Setiawan, “Penerapan Metode K – Nearest Neighbor ( KNN ) dan Metode Weighted Product ( WP ) Dalam Penerimaan Calon Guru Dan Karyawan Tata Usaha Baru Berwawasan Teknologi ( Studi Kasus : Sekolah Menengah Kejuruan Muhammadiyah 2 Kediri ),” vol. 1, no. 5, pp. 378–385, 2017.

P. Putra, A. M. H. Pardede, and S. Syahputra, “Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga,” J. Tek. Inform. Kaputama, vol. 6, no. 1, pp. 297–305, 2022.

N. Nosiel, S. Sriyanto, and F. Maylani, “Perbandingan Teknik Data Mining Untuk Prediksi Penjualan Pada UMKM Gerabah,” Pros. Semin. Nas. Darmajaya, vol. 1, pp. 72–86, 2021.

I. A. A. Angreni, S. A. Adisasmita, and M. I. Ramli, “Terhadap Tingkat Akurasi Identifikasi Kerusakan Jalan,” vol. 7, no. 2, pp. 63–70, 2018.

S. A. Rizky, R. Yesputra, and S. Santoso, “Prediksi Kelancaran Pembayaran Cicilan Calon Debitur Dengan Metode K-Nearest Neighbor,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 7, no. 2, pp. 195–202, 2021, doi: 10.33330/jurteksi.v7i2.1078.

F. N. Cahya, Yudi Mahatma, and Siti Rohmah Rohimah, “Perbandingan Metode Perhitungan Jarak Euclidean dengan Perhitungan Jarak Manhattan pada K-Means Clustering Dalam Menentukan Penyebaran Covid di Kota Bekasi,” JMT J. Mat. dan Terap., vol. 5, no. 1, pp. 43–55, 2023, doi: 10.21009/jmt.5.1.5.

A. K. Clustering, “Perbandingan Akurasi Euclidean Distance , Minkowski Distance , dan Manhattan Distance pada Algoritma K- Means Clustering berbasis Chi-Square,” no. July, 2019, doi: 10.30591/jpit.v4i1.1253.

M. Nurkholifah, Jasmarizal, Y. Umar, and Rahmaddeni, “Analisa Performa Algoritma Machine Learning Dalam Prediksi Penyakit Liver,” J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 1, pp. 164–172, 2023, doi: 10.35870/jimik.v4i1.149.

W. I. Putra, M. Ali, S. Yudono, and A. Sujjada, “Perbandingan Ciri Parameter Tapis Gabor untuk Otentikasi Dorsal Hand Vein Menggunakan Artificial Neural Network,” vol. 12, pp. 440–446, 2023.

M. A. S. Yudono, “Perambatan Balik Untuk Klasifikasi Covid-19 Berbasis Orde Pertama Berdasarkan Citra Chest X-Ray,” vol. 9, pp. 799–808, 2023, doi: 10.251.251.

Most read articles by the same author(s)