Mapping the Research Landscape: A Bibliometric Study of Fuel Cell Technologies and Microgrid Systems

Main Article Content

Handrea Bernando Tambunan

Abstract

The potency of renewable energy sources in power systems, particularly for rural areas, represents a transformative force that addresses energy challenges and brings about sustainable development. Fuel cells offer a transformative role in providing electricity to rural areas, addressing a reliable and off-grid power solution. This study aims to map the research landscape through the bibliometric study of fuel cell technologies and microgrid systems. The analysis includes author analysis, affiliation analysis, country or territory analysis, source analysis, keyword analysis, trend topic analysis, and thematic map analysis. Bibliometric analysis aids policymakers, industry professionals, and academics navigate the wealth of information, ensuring that fuel cell and microgrid integration efforts align with current research trajectories and contribute meaningfully to improving clean and resilient energy solutions. The results would be a valuable compass, guiding stakeholders through the expansive and dynamic landscape of fuel cell and microgrid research, facilitating evidence-based decision-making, and fostering a deeper understanding of the field’s trajectory.

Article Details

How to Cite
[1]
H. B. Tambunan, “Mapping the Research Landscape: A Bibliometric Study of Fuel Cell Technologies and Microgrid Systems”, Fidelity, vol. 5, no. 3, pp. 223-238, Sep. 2023.
Section
Articles
Received 2023-07-19
Accepted 2023-09-08
Published 2023-09-30

References

M. M. Kamal, I. Ashraf, and E. Fernandez, "Planning and optimization of microgrid for rural electrification with integration of renewable energy resources", J. Energy Storage, vol. 52, p. 104782, Aug. 2022, doi: 10.1016/J.EST.2022.104782. P. A. Owusu and S. Asumadu-Sarkodie, "A review of renewable energy sources, sustainability issues and climate change mitigation", Cogent Eng., vol. 3, no. 1, Dec. 2016, doi: 10.1080/23311916.2016.1167990. A. Chel and G. Kaushik, "Renewable energy for sustainable agriculture", Agron. Sustain. Dev. 2010 311, vol. 31, no. 1, pp. 91-118, Apr. 2011, doi: 10.1051/AGRO/2010029. Y. Parag and M. Ainspan, "Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment", Energy Sustain. Dev., vol. 52, pp. 72-81, Oct. 2019, doi: 10.1016/J.ESD.2019.07.003. M. Singh and P. Balachandra, "Microhybrid Electricity System for Energy Access, Livelihoods, and Empowerment", Proc. IEEE, vol. 107, no. 9, pp. 1995-2007, Sep. 2019, doi: 10.1109/JPROC.2019.2910834. S. Mishra, K. Anderson, B. Miller, K. Boyer, and A. Warren, "Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies", Appl. Energy, vol. 264, p. 114726, Apr. 2020, doi: 10.1016/J.APENERGY.2020.114726. A. Jiménez, C. Meza Benavides, S. Garip, and S. Ozdemir, "Optimization of PV and Battery Energy Storage Size in Grid-Connected Microgrid", Appl. Sci. 2022, Vol. 12, Page 8247, vol. 12, no. 16, p. 8247, Aug. 2022, doi: 10.3390/APP12168247. S. Ma et al., "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review", Renew. Sustain. Energy Rev., vol. 135, p. 110119, Jan. 2021, doi: 10.1016/J.RSER.2020.110119. S. Mekhilef, R. Saidur, and A. Safari, "Comparative study of different fuel cell technologies", Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 981-989, Jan. 2012, doi: 10.1016/J.RSER.2011.09.020. M. Hailu Kebede and G. Bekele Beyene, "Feasibility Study of PV-Wind-Fuel Cell Hybrid Power System for Electrification of a Rural Village in Ethiopia", J. Electr. Comput. Eng., vol. 2018, 2018, doi: 10.1155/2018/4015354. G. Brunaccini, F. Sergi, D. Aloisio, N. Randazzo, M. Ferraro, and V. Antonucci, "Fuel cells hybrid systems for resilient microgrids", Int. J. Hydrogen Energy, vol. 44, no. 38, pp. 21162-21173, Aug. 2019, doi: 10.1016/J.IJHYDENE.2019.04.121. V. Martini, F. Mocera, and A. Somà, "Numerical Investigation of a Fuel Cell-Powered Agricultural Tractor", Energies 2022, Vol. 15, Page 8818, vol. 15, no. 23, p. 8818, Nov. 2022, doi: 10.3390/EN15238818. S. M. M. Ehteshami and S. H. Chan, "The role of hydrogen and fuel cells to store renewable energy in the future energy network - potentials and challenges", Energy Policy, vol. 73, pp. 103-109, Oct. 2014, doi: 10.1016/J.ENPOL.2014.04.046. D. Akinyele, E. Olabode, and A. Amole, "Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems", Invent. 2020, Vol. 5, Page 42, vol. 5, no. 3, p. 42, Aug. 2020, doi: 10.3390/INVENTIONS5030042. S. N. Mtolo and A. K. Saha, "A Review of the Optimization and Control Strategies for Fuel Cell Power Plants in a Microgrid Environment", IEEE Access, vol. 9, pp. 146900-146920, 2021, doi: 10.1109/ACCESS.2021.3123181. L. Valverde, C. Bordons, and F. Rosa, "Integration of fuel cell technologies in renewable-energy-based microgrids optimizing operational costs and durability", IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 167-177, Jan. 2016, doi: 10.1109/TIE.2015.2465355. K. Kumar, M. Alam, and V. Dutta, "Energy management strategy for integration of fuel cell-electrolyzer technologies in microgrid", Int. J. Hydrogen Energy, vol. 46, no. 68, pp. 33738-33755, Oct. 2021, doi: 10.1016/J.IJHYDENE.2021.07.203. J. Md Khudzari, J. Kurian, B. Tartakovsky, and G. S. V. Raghavan, "Bibliometric analysis of global research trends on microbial fuel cells using Scopus database", Biochem. Eng. J., vol. 136, pp. 51-60, Aug. 2018, doi: 10.1016/J.BEJ.2018.05.002. R. Wei, H. Chang, S. Huang, and L. Huang, "A bibliometric analysis on safety of fuel cells: Research trends and perspectives", Int. J. Hydrogen Energy, vol. 48, no. 34, pp. 12861-12876, Apr. 2023, doi: 10.1016/J.IJHYDENE.2022.12.211.