Optimization Heart Disease Prediction using Machine Learning Models

Main Article Content

Syahrul Tuba


Healthcare is currently one of the most pressing global issues, with an increase in the incidence of cardiac disease affecting all age groups, particularly the young. Rapid identification and treatment of heart problems can potentially save lives. Artificial intelligence has the potential to significantly aid in this effort. In this study, we aimed to develop a heart disease prediction model using machine learning techniques. We utilized several models, including Support Vector Machine (SVM), K-Neighbors Classifier, Random Forest Classifier, Decision Tree, and Logistic Regression. Based on our experiments, the logistic regression and K-NN models produced the best results, with accuracies of 0.95592% and 0.956194%, respectively. Our findings suggest that machine learning models can be optimized for heart disease prediction and have the potential to improve healthcare outcomes.

Article Details

How to Cite
S. Tuba, “Optimization Heart Disease Prediction using Machine Learning Models”, Fidelity, vol. 5, no. 1, pp. 53-59, Jan. 2023.
Received 2022-10-05
Accepted 2022-12-01
Published 2023-01-31


Javed, S., Javed, H., Saddique, A., & Rafiq, B. (2018). Human Heart Disease Prediction System Using Data Mining Techniques. Sir Syed University Research Journal of Engineering & Technology, 8(2).

Sharma, H., & Rizvi, M. A. (2017). Prediction of heart disease using machine learning algorithms: A survey. International Journal on Recent and Innovation Trends in Computing and Communication, 5(8), 99-104.

Kazemi, M., Mehdizadeh, H., & Shiri, A. (2017). Heart disease forecast using neural network data mining technique. Journal of Ilam University of Medical Sciences, 25(1), 20-32.

Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., ... & American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2021). Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation, 143(8), e254-e743.

Ramprakash, P., Sarumathi, R., Mowriya, R., & Nithyavishnupriya, S. (2020, February). Heart disease prediction using deep neural network. In 2020 International Conference on Inventive Computation Technologies (ICICT) (pp. 666-670). IEEE.

Kumar, M. N., Koushik, K. V. S., & Deepak, K. (2018). Prediction of heart diseases using data mining and machine learning algorithms and tools. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 3(3), 887-898.

Sidik, A., Lumbantobing, H., Suryana, A., Yudono, M. A. S., Putra, Y., Imamulhak, Y., & Indrawan, B.

(2022). EEG-Based Classification of Schizophrenia and Bipolar Disorder with the Fuzzy Method. INTERNATIONAL JOURNAL ENGINEERING AND APPLIED TECHNOLOGY (IJEAT), 5(2), 1-6.

Yudono, M. A. S., Hamidi, E. A. Z., Jumadi, A. H. K., De, A., & Sidik, W. M. (2022). Jaringan Syaraf Tiruan Perambatan Balik untuk Klasifikasi Covid-19 Berbasis Tekstur Menggunakan Orde Pertama Berdasarkan Citra Chest X-Ray. Jurnal Teknologi Informasi dan Ilmu Komputer, 9(4), 799-808.

Sidik, A. D. W. M., Suryana, A., Artiyasa, M., Junfithrana, A. P., Kusumah, I. H., & Imamulhak, Y. (2021). Pengenalan Ekspresi Wajah Menggunakan Teknik Filter Wavelet Gabor. FIDELITY: Jurnal Teknik Elektro, 3(1), 1-4.

Kumaran, I., Firmansyah, M. R., Fauziah, E., Hutahaean, Y. B., Suryana, A., Sidik, A. D. W. M., ... & Kusumah, I. H. (2021). Pengenalan Wajah Menggunakan Pendekatan Berbasis Pengukuran dan Metode Segmentasi dalam Berbagai Posisi dan Pencahayaan. FIDELITY: Jurnal Teknik Elektro, 3(1), 5- 8.

Sidik, A. D. W. M., Kusumah, I. H., Suryana, A., Artiyasa, M., Junfithrana, A. P., Imamulhak, Y., & Putra,

Y. (2020). Menerapkan K-Means Clustering untuk Segmentasi Gambar Database Berwarna. FIDELITY: Jurnal Teknik Elektro, 2(3), 57-61.

Sidik, A. D. W. M., Kusumah, I. H., Suryana, A., Artiyasa, M., & Junfithrana, A. P. (2020). Design and Implementation of an IoT-Based Electric Motor Vibration and Temperature Disruption Handling System. FIDELITY: Jurnal Teknik Elektro, 2(2), 30-33.

Sidik, A. D. W. M., Kusumah, I. H., Suryana, A., Artiyasa, M., & Junfithrana, A. P. (2020). Gambaran Umum Metode Klasifikasi Data Mining. FIDELITY: Jurnal Teknik Elektro, 2(2), 34-38.

Artiyasa, M., Kusumah, I. H., Suryana, A., Sidik, A. D. W. M., & Junfithrana, A. P. (2020). Comparative Study of Internet of Things (IoT) Platform for Smart Home Lighting Control Using NodeMCU with Thingspeak and Blynk Web Applications. FIDELITY: Jurnal Teknik Elektro, 2(1), 1-6.

Maulana, R., & Sidik, A. D. W. M. (2019). Design of an Automatic Nutrition System for Hydroponic Plants with an IoT-based NodeMCU Microcontroller. FIDELITY: Jurnal Teknik Elektro, 1(2), 1-5.

Most read articles by the same author(s)