Improvement Automatic Diabetic Management System using Fuzzy Logic

Main Article Content

Fahrul Nizar Novagusda

Abstract

In almost every nation on the planet, diabetes may be a common chronic condition. Monitoring blood glucose levels is essential to preventing diabetic complications and organ damage. The most used technique for monitoring blood glucose levels is intrusive, uncomfortable, expensive, and risky for transmitting infectious infections. The invasive procedure harms the tissues in the fingers over time. The suggested system functions on a diabetic patient and informs the caregiver or observer of the patient's state. The patient's fingertip is inserted between the glucose-measuring sensors, which a microcontroller uses to calculate the patient's glucose level. When the body's glucose level rises, an insulin injector will automatically inject insulin; glucose will be injected when it falls. The patient's mobile application is utilized to view the insulin and glucose injection amounts and the glucose measurements taken each time. When in critical condition, an SMS is sent to the doctor's or a family member's phone with crucial information and the patient's location.

Article Details

How to Cite
[1]
F. N. Novagusda, “Improvement Automatic Diabetic Management System using Fuzzy Logic”, Fidelity, vol. 5, no. 1, pp. 9-17, Jan. 2023.
Section
Articles
Received 2022-10-01
Accepted 2022-11-18
Published 2023-01-31

References



[1]    Alfian, G., Syafrudin, M., Ijaz, M. F., Syaekhoni, M. A., Fitriyani, N. L., & Rhee, J. (2018). A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing. Sensors, 18(7), 2183.

[2]    Dearden, A., Wright, P., Bowen, S., Rahman, F., Cobb, M., & Wolstenholme, D. (2010, March). Pervasive healthcare in lived experience: Thinking beyond the home. In 2010 4th International Conference on Pervasive Computing Technologies for Healthcare (pp. 1-4). IEEE.

[3]    Lee, H., Park, K., Lee, B., Choi, J., & Elmasri, R. (2008, July). Issues in data fusion for healthcare monitoring. In Proceedings of the 1st international conference on PErvasive Technologies Related to Assistive Environments (pp. 1-8).

[4]    Chen, C., Zhao, X. L., Li, Z. H., Zhu, Z. G., Qian, S. H., & Flewitt, A. J. (2017). Current and emerging technology for continuous glucose monitoring. Sensors, 17(1), 182.

[5]    Insulin Pumps. [Online] https://www.diabetes.org.uk/guide-to-diabetes/managing-your-diabetes/treating-your-diabetes/insulin-pumps Accessed 27 July 2022

[6]    Minimed 670G from Medtronic Inc https://www.medtronic.com/us-en/healthcare-professionals/products/diabetes/insulin-pump-systems/minimed-670g.html

[7]    FreestyleLibre Flash from Abbott Diabetes Care https://www.freestylelibre.us/index.html.

[8]    Maulana, R., & Sidik, A. D. W. M. (2019). Design of an Automatic Nutrition System for Hydroponic Plants with an IoT-based NodeMCU Microcontroller. FIDELITY: Jurnal Teknik Elektro, 1(2), 1-5.

[9]    Sidik, A., Lumbantobing, H., Suryana, A., Yudono, M. A. S., Putra, Y., Imamulhak, Y., & Indrawan, B. (2022). EEG-Based Classification of Schizophrenia and Bipolar Disorder with the Fuzzy Method. INTERNATIONAL JOURNAL ENGINEERING AND APPLIED TECHNOLOGY (IJEAT), 5(2), 1-6.

[10]    Sidik, A. D. W. M., Kusumah, I. H., Artiyasa, M., Junfithrana, A. P., Imamulhak, Y., & Suryana, A. (2021). Desain Wireless Sensor Network (WSN) yang Efisien dengan Mobilitas Node Terkendali Berbasis Energi. FIDELITY: Jurnal Teknik Elektro, 3(2), 23-26.

[11]    Lee, H., Song, C., Hong, Y. S., Kim, M., Cho, H. R., Kang, T., ... & Kim, D. H. (2017). Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Science advances, 3(3), e1601314.

[12]    Alam, M. M., Saha, S., Saha, P., Nur, F. N., Moon, N. N., Karim, A., & Azam, S. (2020). D-care: A non-invasive glucose measuring technique for monitoring diabetes patients. In Proceedings of International Joint Conference on Computational Intelligence: IJCCI 2018 (pp. 443-453). Springer Singapore.

[13]    Yudono, M. A. S., Faris, R. M., De Wibowo, A., Sidik, M., Sembiring, F., & Aji, S. F. (2022, February). Fuzzy Decision Support System for ABC University Student Admission Selection. In International Conference on Economics, Management and Accounting (ICEMAC 2021) (pp. 230-237). Atlantis Press.

[14]    Junfithrana, A. P., Kusumah, I. H., Suryana, A., Artiyasa, M., & De Wibowo, A. (2019). Identifikasi Gas terlarut Minyak Transformator dengan Menggunakan Logika Fuzzy Menggunakan Metode TDCG untuk Menentukan Kondisi Transformator 150 KV. FIDELITY: Jurnal Teknik Elektro, 1(1), 11-15.

[15]    Sidik, A., Lumbantobing, H., Suryana, A., Yudono, M. A. S., Putra, Y., Imamulhak, Y., & Indrawan, B. (2022). EEG-Based Classification of Schizophrenia and Bipolar Disorder with the Fuzzy Method. INTERNATIONAL JOURNAL ENGINEERING AND APPLIED TECHNOLOGY (IJEAT), 5(2), 1-6.